科学家故意倾泻石油入湖泊研究生态保护
科学家故意倾泻石油入湖泊研究生态保护
It’s rare that oil is spilled intentionally. But that is what recently happened at a lake in Ontario, Canada.
故意泄漏石油世所罕见。但最近,在加拿大安大略省的一个湖泊这样的事情还真在上演。
Earlier in June, bitumen – a molasses-like product that comes from oil sands – was drizzled into corrals in an unnamed lake in Ontario’s International Institute for Sustainable Development Experimental Lakes Area (IISD-ELA). The reason may seem counterintuitive: to protect future freshwater systems from oil spills.
六月初,沥青——油砂中提炼出的糖浆似物质,被倒入了安大略国际可持续发展研究院实验湖区(IISD-ELA)中一个无名湖的围栏中。原因可能听起来有些莫名其妙:为了保护未来可能遭受石油泄漏的淡水系统。
In giant, test tube-like columns of natural lake water, scientists are studying the physical, chemical, biological and toxicological impacts of the diluted form of bitumen (called ‘dilbit’ for short) on freshwater organisms – from tiny plankton to frogs and fish.
在这些装着天然湖水的巨大的管子似的圆柱中,科学家们正在研究稀释沥青对淡水生物(从浮游生物到青蛙和鱼类)的物理作用、化学作用、生物作用以及毒性作用。
Until now, these kinds of experiments have only been attempted in the laboratory. But lab-based work can’t replicate a real-life scenario. This experiment, the first of its kind in Canada, is an opportunity for scientists to answer the kinds of questions that could help protect Canada’s lakes in the future: What happens to spilled bitumen in freshwater ecosystems? Where does it go? And how can it be cleaned up in the safest, most effective way? That’s because clean up procedures for accidentally spilled dilbit are necessarily different than those for conventional crude oil.
在此之前,这种实验只在实验室中做过,但仅仅基于实验室的研究不能复制真实自然界情景。加拿大这项开创性实验,让科学家们有机会弄清楚未来如何有效保护加拿大湖泊的一些问题,比如泄漏的沥青在淡水生态系统中会引起什么反应?沥青去了哪里?怎么能最安全、有效地清理干净?因为清理稀释沥青的方法和传统原油的方法并不相同。
In the weeks leading up to the spill, dozens of students have been labouring at the gravel pit, shovelling sand into bags. They haul their quarry along a muddy, root-filled trail to the lake by lorry and quad bike. Once unloaded, the heavy sandbags are muscled down to the wooden dock to be loaded onto boats. “It’s really cheap cross-fit,” says University of Manitoba student Sonya Michaleski, here for her third summer, with a laugh.
在倾倒稀释沥青之前的几个星期,许多学生已经在采石场工作了很久。他们铲沙装进袋子,然后开着卡车或四轮摩托,沿着树根缠绕的泥泞道路,把这些沙袋运到湖边,卸下来之后放在木制码头上,然后再搬到船上。这是曼尼托巴大学的学生麦考斯基( Sonya Michaleski)来这里的第三个夏天,她笑着说,“不花钱就能健身。”
Hauling sandbags is one part of her job. Collecting fish slime and fish vomit for analysis is another. Graduate student Sam Patterson explains his role: drawing water from the enclosures before and after the dilbit spill, then placing the black-dotted eggs of wood frogs in the treated and untreated water to see how the exposure affects their development.
运沙袋是她工作的一部分。搜集鱼的粘液和呕吐物做分析是她的另一项工作。帕特森(Sam Patterson)是一名研究生,他解释自己的角色:搜集稀释沥青泄漏前后围栏内的淡水,然后将树蛙的黑点卵放入经过处理和未经处理的两类湖水中,观察沥青对树蛙发育会有什么影响。
The bulk of the data collection will take place this summer and autumn before the lake freezes up. Subsequent analysis by their team of more than 30 scientists will be shared first in academic journals, but ultimately with the public.
大量数据采集基本会在湖水上冻之前的夏天和秋天完成。30多个科学家组成的团队其后续分析结果会首先发表在学术期刊上,但最终会与大众分享。
The IISD-ELA is known for its whole lake experiments. Past work has contaminated some lakes with phosphorus, cadmium, mercury, and synthetic oestrogen, the active ingredient in birth control pills. But never oil.
国际可持续发展研究院实验湖区( IISD-ELA)以其完全在室外淡水湖作实验闻名。以前的实验曾用过磷、镉、汞、合成雌激素等化学物,以及避孕药里的有效成分来污染湖水作研究,但从未试过石油。
The experiment – nicknamed Boreal, an acronym for Boreal Lake Oil Release Experiment by Additions to Limnocorrals – won’t be a whole lake experiment, either. Small enclosures restrict the oil spill area and four extra containment measures are in place to avoid contaminating the entire body of water, explains Vince Palace, IISD-ELA’s head research scientist and project leader for a separate oil spill experiment, the Freshwater Oil Spill Remediation Study (Forest).
实验的昵称是“北湖”(Boreal),是北方湖泊石油泄漏实验加上湖泊围栏的简称,但不是用整个湖区作实验。帕雷斯(Vince Palace)是国际可持续发展研究院实验湖区(IISD-ELA)的领头研究员,也是另一个独立的石油泄漏实验和淡水石油泄漏整治研究(森林)的项目带头人,他解释道,用围栏封闭住的部分湖区是一个很小范围,倾倒的石油只限制在这个小范围内,而且还采取了另外四种控制措施防止倾倒的石油渗透污染到整个水体。
Still, even this smaller spill area will give scientists a much better idea of how bitumen behaves, and how it affects the environment, than what they are able to mimic indoors in a laboratory.
虽然圈着的泄漏实验区域很小,但相比实验室内的模拟环境,科学家们能够更有效地了解沥青发生了哪些变化,以及如何影响环境。
In a lab, “there are technical problems with what we call scaling – how you go from a small scale to a big scale,” says Bruce Hollebone, an analytical chemist with Environment and Climate Change Canada and a collaborator on the Boreal experiment. “It’s not like model ships where you can test how a canal might work, for example, at a much smaller scale. You can’t do that with oil spills because you’ve got so many things involved, and they all change at different rates when you increase the size.
霍利博恩(Bruce Hollebone)是加拿大环境与气候变化分析化学家,也是北湖实验的协调员。他说,在实验室里,“有一种很难解决的技术问题,我们称之为规模问题,即怎么把小规模的实验应用到大规模的现实中去。比如,你可以小规模地用模型船测试运河如何工作,但是石油泄漏不行,牵涉到太多变量,范围一扩大这些变量就会发生改变。”
“Boreal gives us an opportunity to do work not at full scale, but very close to it… and really get a good handle on what happens in these natural settings.”
“北湖的实验的规模也不是真实的,但已经非常接近…能确实知道在自然环境下发生了什么。”
Plus, oil spills mainly have been studied in the ocean. Even of oil spill studies devoted to freshwater, Hollebone says, “there are vanishingly few that look at boreal ecosystems". (A boreal ecosystem is what many envision as iconic Canadian wilderness: its a landscape of conifer trees and granite outcrops, boggy wetlands and lakes).
科学界主要是研究发生在海洋的石油泄漏。霍利博恩说,即使是研究淡水石油泄漏, “很少有人研究北方生态系统。”北方生态系统是指典型的加拿大自然荒野,有针叶林,花岗岩,沼泽湿地和湖泊的大自然。
“Half of Canada is a boreal ecosystem,” Hollebone adds.
霍利博恩补充道,“加拿大国土一半都是北方生态系统。”
How an oil spill could affect this and other ecosystems has become a controversial issue in Canada. All Canadians are soon to be part owners in a pipeline purchased by the federal government.
石油泄漏如何影响北方生态系统和其他生态系统在加拿大已成了引发大量争议的问题。加拿大联邦政府购买了输油管,所有的加拿大人都即将成为输油管的部分拥有者。
Multiple modes of transportation, including pipelines and railways, already move oil through Canada’s boreal ecosystems. Over the past decade, explains Hollebone, Canada has had multiple spills into boreal forest and wetlands. In dealing with these spills, “we are underequipped knowledge-wise,” he says.
各种运载石油的系统,包括输油管和铁路已经在穿越加拿大的北方生态系荒野。霍利博恩解释道,在过去的十年中,已经发生多起石油泄漏到北方森林和湿地中的事件。他说,在处理石油泄漏方面, “我们的知识还不足够。”
One challenge is that bitumen is very viscous, even when it’s diluted with the lighter oil fractions that allow it to flow – as dilbit – through pipelines. When spilled, dilbit behaves very differently in freshwater versus marine systems, says Diane Orihel of Queen’s University in Kingston, Ontario, one of Boreal’s leaders. Among other questions, researchers want to investigate how long diluted bitumen will float in freshwater ecosystems, how quickly the lighter component evaporates, how much actually ends up in the sediment and how quickly it enters and accumulates in the food web.
挑战之一在于,沥青粘度较高,即使用轻质油稀释成可以在管道中运输的稀释沥青,粘度还是很高。奥里赫(Diane Orihel)来自安大略省京士顿市的皇后大学,是北湖实验的带头人之一。她说,稀释沥青泄漏在淡水系统和海洋系统中的反应非常不同。另外,研究员们还想调查稀释沥青会在淡水生态系统中漂浮多久,较轻的成分要多久才会蒸发掉,又有多少会沉淀下来,以及需要多少时间进入并累积在食物链中。
To track where dilbit ends up, the researchers will work in teams, each targeting ecosystem effects in different categories, such as air, water, sediment, periphyton (the community of tiny organisms that grows on submerged surfaces) and animals like wood frogs and fathead minnows. Then they calculate the mass of polycyclic aromatic hydrocarbons (PAHs) – a family of chemicals found in organic materials like oil, which include known carcinogens – in each section.
为了追踪稀释沥青到底去了哪里,研究员会分成不同的小组,每个小组针对不同类别的生态系统,比如空气、水、沉积物,周从生物(生长在淹没于水中的各种基质表面的生物群),以及类似树蛙和黑头呆鱼的动物。然后他们计算每个环节中含有的多环芳香烃(PAHs)数量。多环芳香烃是一类在有机物质比如石油中发现的芳香族化合物,其中包括致癌物质。
The Boreal team will also examine how members of the community differ before and after the dilbit spill. What kinds of bacteria, phytoplankton, zooplankton, bottom-dwelling invertebrates, and insects are there? How many of each? And how does bitumen affect their ability to survive, function, reproduce, and provide food for all of the species that eat them?
北湖团队会研究稀释沥青泄露前后生物群的变化。有什么样的细菌、浮游植物、浮游动物、底栖无脊椎动物和昆虫?每一物种数量有多少?稀释沥青如何影响这些物种的生存、生理功能和繁衍,以及如何为其捕食者提供食物?
Boreal’s lead principal investigator Jules Blais of the University of Ottawa is studying how quickly PAHs from the dilbit spill are accumulated or eliminated from fish. Boreal’s ability to look at biological effects of six different doses of dilbit, all in a natural setting, is unique, Blais says. “No study of this sort has ever been done before,” he says. “By looking at this from low doses to high doses, [and comparing to three enclosures with no doses] we can identify thresholds beyond which we see effects.”
北湖实验的首席研究员,来自渥太华大学的布莱( Jules Blais)研究稀释沥青中的多环芳香烃在鱼类中累积或清除所需时间。他说,北湖实验能够在自然环境中研究六种不同量的稀释沥青对生物的影响,这是绝无仅有的。 “以前从未做过这种实验,从大量到少量,并和没有沥青的三个围栏圈作对比,因此我们能从对比中确定,一旦越过某剂量界限稀释沥青就会对生态环境产生影响。”
The doses of dilbit have been carefully calculated to mimic recent real-life US and Canadian bitumen and crude oil pipeline spills. In terms of oil-to-water ratios, their highest dose almost approximates that spilled into the Kalamazoo River, Michigan in July 2010 – one of the largest inland oil spills in US history.
研究人员对稀释沥青的剂量经过精细计算来模仿最近美国和加拿大真实的沥青和原油管道泄漏事件。至于油水比例,最大的量和2010年7月密歇根卡拉马祖河的石油泄漏事件相近,该事件是美国历史上最大的内陆石油泄漏。
Boreal’s researchers will be looking carefully to see how long the spilled bitumen floats on the surface, before sinking to the bottom. Diluted bitumen, a mixture that is about half asphalt, is a sticky problem that’s hard to clean up once it sinks.
北湖实验的研究员认真观察泄漏的沥青沉底之前会在水面飘浮多久。稀释沥青,差不多一半是沥青的混合物,一旦沉底很难清除。
Last year a pilot project for Boreal at IISD-ELA spilled bitumen into three land-based outdoor tanks filled with lake water and sediment. That work hinted that weather may play a key role in how long spilled bitumen floats. While initially floating on the surface “very quickly, the density and viscosity of that oil changed, and it began to sink,” says Orihel. The first week of the pilot study was quite sunny, but after a heavy rainfall on day seven, the bitumen all sank.
去年国际可持续发展研究院实验湖区(IISD-ELA)的试验项目,将沥青倒入三个装着湖水和沉积物的地上水缸中。结果发现沥青漂浮在水面的时间长短久,天气起着关键性的作用。奥里赫说,刚开始漂浮在水面时, “油的密度和粘度很快发生了变化,然后开始下沉。”试验研究的第一周,天气很好,阳光明媚,但是第七天下了大雨,所有沥青都沉到水缸底。
But that early observation, cautions Orihel, is preliminary. How bitumen will behave in the lake’s newly established giant test tubes remains a mystery waiting to be solved.
但奥里赫提醒说,初期的观察还很肤浅,沥青在湖中巨大的新测试管中究竟会发生何种变化,尚需时间才能揭晓。