好英语网好英语网

好英语网 - www.laicaila.com
好英语网一个提供英语阅读,双语阅读,双语新闻的英语学习网站。

无人驾驶帆船能穿越大西洋吗?

Can an autonomous sailboat cross the Atlantic?
无人驾驶帆船能穿越大西洋吗?

No one has ever sailed an autonomous boat across the Atlantic. Few have even tried – just a handful of teams have competed in the transatlantic Microtransat Challenge since it began in 2010. All have failed, for reasons including “caught in a fishing net”, “picked up by a fishing boat” or, frequently, simply lost at sea with a vague last-known location.

至今没有人操纵过一艘无人驾驶的船只穿越大西洋,甚至几乎没有人尝试过。只有少数几个比赛队伍参加了自2010年发起的跨大西洋机器人航海挑战赛(Microtransat Challenge),但都以失败告终,原因包括船只"被鱼网缠住","被渔船捞起来",或者是在海上迷了路,最后仅仅留下一个模糊的失踪位置。

The closest anyone has ever come was the summer of 2017, when a boat called Sailbuoy, built by a company called Offshore Sensing, travelled 1,500 kilometers – more than half way – before it started going in circles.

最接近成功的一次是在2017年的夏天,当时一艘由一家名为离岸传感公司(Offshore Sensing)制造的名为"航行浮标"(Sailbuoy)的船,行驶了1500公里,即超过了一半的航程,不过在此之后它开始绕圈,最终未能成功跨越。

Officially, the winner of the Microtransat is the fastest team to achieve the crossing; in reality, the winner is the first. They have set rules, like a maximum vessel length (2.4m or 8ft) and an obstacle/collision avoidance system. But teams can just launch their boat anytime between July and December, and it doesn’t even matter what direction they go – Newfoundland to Ireland, or vice versa. Competitors include university clubs, but also autonomous vessel companies like Offshore Sensing (a company that makes sail-powered autonomous research vessels), and even the US Naval Academy. The main goal is just finishing, after all.

根据官方规定,最快完成跨越的团队即为跨大西洋机器人航海挑战赛的胜出者;而在现实中,第一次实现跨越的无人驾驶帆船就是比赛赢家。主办方制定了规则,比如船只的最大长度(2.4米)和船只必须安装防障碍/防碰撞系统。参赛队伍可以在7月到12月之间随时启动他们的船,不管他们从哪个方向航行——纽芬兰到爱尔兰,或者反之亦然。参赛队伍包括大学俱乐部,也包括无人驾驶船只的制造公司,例如海洋传感公司 (一家制造帆船动力自动驾驶研究船舶的公司),甚至美国海军学院(US Naval Academy)等。毕竟,比赛的主要目标是完成跨越。
“It’s just a really challenging environment,” says David Peddie, CEO of Offshore Sensing. “You have to cope with anything the ocean can throw at you.”

离岸传感公司的首席执行官大卫·佩迪(David Peddie)说:"这是一个非常具有挑战性的环境,你必须应对海洋中可能出现的任何情况。"

Sailbuoy has a bit of an advantage. It’s a commercial company that sells similar boats for applications in oceanography and meteorology research. The vessel it sent on the Microtransat had previously completed several months of autonomous sailing in the rougher North Sea without any problems.

航行浮标(Sailbuoy)具有一定的优势。离岸传感公司是一家商业公司,专门销售供海洋学和气象研究使用的船只。它在跨大西洋机器人航海挑战赛上派出的船此前已经在海况复杂的北海(North Sea)完成了几个月的独立航行,没有出现任何问题。

From the top, the boat looks a little like a surfboard, with a solar panel in the middle, and a short, trapezoidal sail near the front. Aside from the sail, it sits low in the water, cutting through with a tapered nose and tail. Rough seas toss it about, even washing over the top, without damaging it, and it seems, almost miraculously, to keep a steady course.

从顶部看,这艘船有点像冲浪板,中间有一块太阳能板,在前面有一个短的梯形帆。除了船帆外,它吃水很深,用锥形的船头和船尾开路。它能够在波涛汹涌的大海中航行,甚至海水有时淹没了整艘船,也不会损坏它,而且还能奇迹般地保持着稳定的航向。

Others have eyes on the challenge, too, and new ideas on how to solve it. At the Aland University of Applied Sciences, a small team of engineers has been building robotic sailboats and entering them in competitions since 2013. This year, they bought a 2.8m (9.2ft) rigid “wing” type sail – the kind of symmetric airfoil you might see on World Cup sailboats – from a Swedish aircraft manufacturer and mounted it on their 2.4m (8ft) sailboat, ASPire.

其他人也在关注这个挑战赛,也提出了解决问题的新点子。在芬兰的奥兰应用科学大学(Aland University of Applied Sciences),一支由工程师组成的小团队自2013年起就开始建造机器人帆船,并参加了比赛。今年,他们从瑞典飞机制造商那里购买了2.8米长的刚性"翼"型帆, 这是一种在世界杯帆船赛上亮相过的一种对称翼,并将其安装在他们2.4米长的无人驾驶帆船ASPire上。

ASP stands for Autonomous Sailing Platform, and it’s white like Sailbuoy, but with a deeper, narrower hull and the tall, rectangular wing sail, flanked with two smaller airfoils. Both rigs were built not to compete in a race, but to act as research tools, carrying water sensors to measure pH, temperature, conductivity, and salinity. Despite the focus on research, the risks of using the new and unproven wing sail, and an untested system, Aland Sailing Robots entered its vessel in September’s World Robotic Sailing Championships, held in Horten, Norway – and won.

ASP意为一个自动帆船平台,它像航行浮标一样,是白色的,但有一个更深更窄的船体和很高的矩形翼帆,两侧有两个小的翼帆。这两种帆装不是为了参加比赛而制造的,而是作为研究工具,携带水传感器来测量pH值、温度、导电性和盐度。尽管主要用于研究,但奥兰航行机器人(Aland Sailing Robots)在9月份于挪威霍顿(Horten)举行的世界机器人帆船锦标赛(World Robotic Sailing Championships)上,冒着使用未经验证的翼帆和未经测试的系统的风险,最终取得了胜利。

The World Robotic Sailing Championships is a spin-off of the Microtransat in which teams from universities or companies in related fields compete over four days in different tasks, including a fleet race, an area-scanning competition, collision avoidance, and station keeping, where the boat must hold its position for five minutes.

世界机器人帆船锦标赛是跨大西洋机器人航海挑战赛的衍生赛事,在为期四天的比赛中,来自相关领域的大学或公司的团队需要完成不同的任务,包括竞速赛、区域扫描比赛、避免碰撞比赛以及位置保持比赛(在比赛中船只必须在特定位置保持五分钟)。

On a windy first day along Norway’s Oslofjord inlet, a staggered-start race saw ASPire launch shortly after a boat from Norway. As the boats headed out into Horten’s inner harbour, a bay next to a shipyard with Sweden visible across the water, the team from Aland watched their boat slowly catch, then pass the leading boat.

比赛的第一天有风,地点位于挪威奥斯陆峡湾(Oslofjord)的入口处。ASPire紧随在一艘来自挪威的船只后面。当这些船只驶进霍顿的内港(这个海湾与瑞典的造船厂相邻),ASPire慢慢地赶上了前方的对手,然后超过了领头的船。

“That was good to see,” says Anna Friebe, project manager for Aland Sailing Robots. “I didn’t really think we would be able to compete. But it ended up working, just in time.”

"这太棒了!"奥兰航行机器人的项目经理安娜·弗莱比(Anna Friebe)说,"我真的没想到我们能参与比赛,而且最终还成功了。"

While the team’s strength is in software engineering and situational analysis, they still have to be adept enough at mechanical engineering to make the boat operate in the challenging seas. ASPire was built on a hull with stabilising lead weights in the keel that was used in a paralympic sailing competition. To this, in addition to the wing sail, the team mounted the research sensors and built a rig to winch those down into the water.

虽然团队的优势在于软件工程和情景分析,但他们仍然需要熟练掌握机械工程技能,才能使船在充满挑战的海洋中行驶。ASPire是在帆船基础上改造的,它采用了一种除了在残奥会帆船比赛中使用的用于稳定船体的铅锤。此外,在翼帆之外,团队还给它安装了研究传感器,并建造了将这些传感器放置在水中的装备。

The boats at the World Robotic Sailing Championships vary in size and shape, from the futuristic-looking ASPire to a small, traditional two-sailed sloop that looks like the kind of remote-control sailboat a kid might sail on a pond. On the second day of the competition, the fjord was shrouded in rain as the boats used the wind, the angle of their sails, and their rudders, to sit precisely in position without moving. Like all the competitions, an onboard computer, programmed ahead of time, had to be capable of recognising the wind conditions, understanding its own location, and manipulating the sail and rudder to compensate. This too, Aland won, ahead of second-place hosts University College of Southeast Norway and US Naval Academy in third place.

参加世界机器人帆船锦标赛的船在大小和形状上都有所不同,比如前卫的ASPire和传统的小型单桅双帆船,后者看起来就像孩子在池塘上操控的遥控帆船。在比赛的第二天,奥斯陆峡湾下起了雨,参赛船只需要利用风、帆的角度以及船舵,就可以保持在当前位置上不动。就像所有的比赛一样,机载计算机和预编程序必须能够识别风况,了解它自己的位置,并根据情况操纵帆和舵。奥兰取得了胜利,排名第二位的是挪威东南大学(University College of Southeast Norway),美国海军学院则排名第三。

Day three featured area scanning, where boats had 30 minutes to cover as much of a designated area as possible. Most used a traditional tacking manoeuvre to trace a path, playing out line to open the sail, or reeling it in to change the angle. ASPire’s wing sail instead rotated around a central mast, which Friebe says simplified the operations. Seen from overhead, ASPire’s path looks like a lawn-mower grid, compared to other boat’s piles of spaghetti, and so Aland made a full sweep, as day four’s collision avoidance event was cancelled due to a lack of sufficient wind.

第三天进行了区域扫描赛,船只有30分钟的时间来到达尽可能多的指定区域。大多数人都使用传统的固定方式来追踪一条路线,使用绳索开帆,或者用它来改变角度。ASPire的翼帆绕着一个中心桅杆旋转,弗莱比说这是简化了操作。从头顶上看,ASPire的路径看起来像是割草机,而其他船只像是意大利面,因此奥兰包揽了全部奖项,第四天的避免碰撞比赛由于缺乏足够的风力被取消。

Aland Sailing Robots was formed to compete in the Microtransat, but financial pressure – most of their funding comes from the European Regional Development Fund and goes toward the marine research platform – means they haven’t had the resources to make an attempt at the crossing. The fun of competition and the long-term quest to cross the Atlantic are, for many of the participants, byproducts of business or research projects.

奥兰帆船机器人是为了参加跨大西洋机器人航海挑战赛而组建的,但是迫于资金压力(他们的大部分资金来自欧洲区域发展基金,并致力于海洋研究平台),这意味着他们没有足够的资源来尝试穿越大西洋。因此对许多参赛者来说,比赛的乐趣和对跨越大西洋的长期努力都是商业或研究项目的副产品。

The aim of the Microtransat, according to organiser Colin Sauze, is to contribute to ocean-monitoring platforms, but also to provide a learning opportunity.

据组织者科林·索兹(Colin Sauze)介绍,跨大西洋机器人航海挑战赛的目的就是为了促进海洋监测平台的建设,但同时也提供一个学习的机会。

Both Aland and Offshore Sensing are focusing primarily on aquatic research. Robots offer several big advantages over the other means of acquiring ocean data, says Peddie. The other options – a drifting buoy, or a manned vessel – are less mobile or more expensive. A traditional research vessel can cost $20,000 (£15,180) per day, which Peddie says could run an autonomous sailboat for several months, including the cost of the boat. Furthermore, small boats (Sailbuoy is two metres long and weighs 60kg (200lbs)) can go places manned boats can’t, like the path of a hurricane, or volcanic or iceberg fields.

奥兰帆船机器人和离岸传感都主要关注海洋研究。佩迪说,在获取海洋数据的方法上,无人驾驶帆船具有几大优势。其他方案,比如漂流的浮标,或者一艘载人船只,欠缺机动性或花费更为昂贵。传统的研究船只运营成本每天可以高达20,000美元(15,180英镑),而包括建造成本在内的无人驾驶帆船则可以依靠这笔费用运行几个月之久,佩迪介绍说。此外,小型船只(航行浮标2米长、重60公斤)可以航行至载人船只无法到达的地方,比如飓风路径,或火山或冰山区等。

Many of the other teams, both in the Microtransat and the World Robotic Sailing Championships, are either run by industry, or partnered with industry. The US Naval Academy team uses it as education for naval personnel (their boat, Trawler Bait, has been caught by fishermen more than once). Half of the Chinese team is from Shanghai University, and the other half is from a company. The Norwegian naval research institute sent an autonomous boat to help with the event.

许多其他的团队,无论是在跨大西洋机器人航海挑战赛中,还是在世界机器人航行锦标赛上,要么由行业管理,要么是与行业合作。美国海军学院的团队将其用作海军人员的教育(他们的船——拖网诱饵(Trawler Bait),已经不止一次被渔民捕获)。中国团队中有一半来自上海大学,另一半来自一家公司。挪威海军研究所派出了一艘无人帆船只来协助赛事。

And a lot of what they work on can be applied even beyond sailing vessels. Autonomous shipping is already burgeoning, and the standards Microtransat competitors must meet for collision avoidance are the same ones put out by the International Maritime Organisation, and the automatic identification system that the Aland team used to transmit and receive course and speed to other vessels is the same one that commercial ships use.

他们所做的许多工作甚至可以应用在帆船之外。自动化航运已经蓬勃发展, 标准跨大西洋机器人航海挑战赛竞争者必须满足的避碰要求与国际海事组织相同。而奥兰团队使用的用来发送和接收其他船只路线和速度的自动识别系统也与商业船只相同。

“For us, as a company, it wasn’t a really big deal, the actual Microtransat,” says Peddie. “But I’ve been following these guys for a number of years, and I think it’s an interesting concept. It’s also something which has historic significance, like Lindbergh flew over basically the same distance connecting America to Europe.”

佩迪说:"对我们来说,作为一家公司,这并不是真正的大事。但我已经关注这些人好几年了,我认为这是个有趣的概念。这也是具有历史意义的事,就像当年林德伯格(Lindbergh)从美洲飞行到欧洲一样。"

Still, Peddie plans to try again next year, once the Sailbuoy, which was picked up by a fishing vessel, is returned and fixed (they still don’t know quite what’s wrong with it). “We’d just like to be the first ones who do it, and manage to cross this part of the ocean,” he says. “Next year I expect we’ll manage the full 3,000 miles.”

尽管如此,佩迪还是计划明年再试一次,因为航行浮标被一艘渔船打捞起来,并被归还修复(他们仍然不知道出现了什么问题)。"我们只是想成为第一批这样做的人,并设法跨越大洋的这一部分,"他说,"明年,我们预计将完成3,000英里的航行。"
赞一下
上一篇: 你敢不敢乘坐无人驾驶客机?
下一篇: 无人驾驶船只将改变海上运输未来
隐藏边栏